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Abstract: This paper is concerned with three-echelon supply 
chain design where each supplier provides a unique set of 
goods from known, possibly multiple, locations and where 
each outlet has a fixed, known demand so that it exhibits the 
features of the supply chain of an existing company that 
operates across Canada and in the United States of America 
(35 suppliers, 83 potential DC locations and 2,976 outlets). A 
mathematical model is presented whose solution determines 
the location and capacity level of Distribution Centers (DCs) 
and assigns outlets to the selected DCs. The model is unique 
in that it allows true variability in the choice of capacity level 
and so avoids the need to determine, a priori, a set of 
potential capacity levels. The design objective is to minimize 
fixed and variable costs for operations and transportation 
that account for decreasing marginal costs and economies of 
scale. This makes the model a binary, non-convex 
optimization problem. A piecewise linear approximation to 
the concave cost functions that captures the concept of 
“technology break-points" results in a model for which 
LINGO can quickly determine high quality solutions.  
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1.     Introduction 

The optimal design of supply chains is critical in order for 
a company to become and / or remain globally competitive. 
Excellent reviews of the published literature can be found 
in, for example, [1]-[4]. The decision phases for supply 
chain management can be classified as strategic, tactical 
and operational [5]. Strategic management is concerned 
with decisions such as the number, location and the 
capacity level of Distributions Centers (DCs). Tactical 
decisions include the determination of the flow of products 
between the supply chain echelons over a specific planning 
horizon.  

Operational decisions involve items such as truck routing. 

This paper addresses both strategic and tactical decisions 
for a three echelon supply chain with suppliers, distribution 
centers (DCs), also called plants and outlets, also called 
customers. 

The Simple Plant Location Problem (SPLP), also known as 
the Uncapacitated Facility Location (UFL) problem, given 
in [6], [7] has binary variables to indicate whether or not a 
plant is built at a pre-selected location and has fractional 
variables to determine the percentage of demand for each 
customer met by a particular plant. The cost functions 
include transportation costs and fixed cost for building. 
While SPLP is NP-hard, primal-dual algorithms can be 
effective in solving large SPLP problems to optimality, or 
near optimality [8]. Generalizations to the SPLP include 
the consideration of trade-offs between inventory, 
transportation and building costs [9], an ability to choose 
the optimal mix between dedicated and flexible 
technologies [10], the inclusion of costs modeled by the 
convex part of a non-linear, increasing function [11], the 
extension to two echelon supply chains [12] and multi 
product supply chain designs [13], [14]. An exact solution 
method when there are convex transportation costs can be 
found in [15].  

In [16] a new formulation is given for the multi-level 
supply chain network design and is shown that small and 
medium sized instances of this formulation can be solved 
by, for example, CPLEX.  A mixed integer linear 
programming model, along with a Lagrangean based 
solution procedure, is given in [17] for three-echelon 
multi-capacitated supply chain network design. The 
capacity levels and locations of the DCs and suppliers are 
chosen from predetermined locations and from finite sets 
of discrete capacity levels, respectively. The cost functions 
in the model include the variable costs associated with the 
chosen capacity level. In [18], the variable costs are 
charged only for the level of activity resulting in a binary 
quadratic optimization model. Beasley [19] presented a 
Lagrangian-based solution procedure for different location 
problems including p – median and uncapacitated location 
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problem. The capacitated plant location problem for 
offshore oil exploration platforms is studied in [20]. 

This paper is concerned with three-echelon 
variable-capacitated supply chain network design with 
modifications to capture some features of a model 
company with operations across Canada and in the United 
States of America. (The identity of the company is 
protected by a non-disclosure agreement.) The company’s 
supply chain network has a fixed set of 35 suppliers, each 
providing a unique set of goods, some from multiple 
locations. The location of the built DCs will be chosen 
from a pre-selected, finite set of 83  potential DC 
locations. Once built, the DC will receive goods from the 
closest supplier. Consequently, the supplier network 
influences the location and capacity of the DCs only 
through the in-bound transportation costs. It is assumed 
that the suppliers have sufficient capacity to meet total 
network demand. The 2,976 outlets, organized into 133 
clusters according to the first two digits of their postal 
code, receive regular shipments of a variety of goods, in 
varying quantities. To reduce the complexity of the 
problem historical data is used to create a generic 
out-bound pallet and to determine a fixed demand for the 
generic pallet for all outlets. Further, historical 
transportation costs can be used to determine an average 
out-bound cost per pallet per kilometer. Assuming that a 
particular supplier uses identical pallets from all of its 
locations an average in-bound cost per pallet per kilometer 
can be determined. The in-bound pallets are different for 
different suppliers and are different than the out-bound 
pallet. The use of the cost per pallet-kilometer factors 
avoids the need to consider truck routes, truck types, loads 
and driver schedules. 

The decision variables for the supply chain design problem 
considered in this paper will be the selection of DC 
location, DC capacities and outlet to DC assignment. The 
DC locations are chosen from a predetermined set of 
potential DC locations but the capacity level will be 
determined by the total demand from the assigned outlets. 
Consequently, the model allows true variability in capacity 
selection and the operational costs will not include costs 
for unused capacity. 

The supply chain design will be driven by the objective of 
minimizing the in-bound transportation costs, out-bound 
transportation costs, fixed DC set up costs, building costs, 
and operational costs. The transportation costs will be 
linear functions of the number of in-bound and out-bound 
pallets shipped. The building and operational costs will be 
modeled to include economies of scale and decreasing 
marginal costs. Consequently, these cost functions are 
concave, which, together with the fixed DC set up cost, 
will result in the establishment of fewer DCs with larger 
capacity levels. This feature supports the consolidation 
policy in supply chain design. 

The Binary, Non-Linear, Concave Optimization (BO) 
model is developed and demonstrated in section	2. To  

 

capture the concept of “technology break-points" a 
piecewise linearization (PWL) of the BO model is given in 
section 3. Numerical examples abstracted from the model 

company are given to demonstrate the effectiveness of 
LINGO to solve the supply chain design models. The final 
example has 11	122  variables and 216 constraints and 
its solution validates the applicability of the model. 

2.     Model Formulation 
This paper adopts much of the notation and model 
development as in [18]. The outlets, potential DC 
locations, and suppliers are indexed by �	 ∈ , �	 ∈ �, 
and �	 ∈ �, respectively. The binary variables �� and ��� 
indicate if a distribution center is to be built at location d 
and if distribution center �  is to provision outlet � , 
respectively. Since ��� is binary,  

 �����∈�
= 1							∀	�	 ∈ ,																		(1) 

 
ensures that each outlet is assigned to a single DC. Let �� 
be the out-bound pallet demand at outlet �. Since �� is 
binary,  
 �	���∈�

��� −��� 	≤ 0								∀	�	 ∈ �,										(2)	 
 

ensures that, for each DC, the total demand from the outlets 
assigned to that DC does not exceed the maximum 
allowable capacity level �, where, for example, � could 
be set as the total network demand. 
Clearly, the model allows complete variability, from 0 to �, in the selection of the capacity level for each DC. In 
fact, the model sets the capacity level of a DC to the total 
demand from its assigned outlets. This avoids the need to 
make a priori capacity level selections. 
Let "��  be the distance in kilometers from distribution 
center �  to outlet � . If #  is the cost of shipping one 
out-bound pallet one kilometer, then the total out-bound 
transportation cost is  
 $%&'(�) = 	#	��"���∈��∈�

��	���.					(3)		 
 

Let ")*�  be the distance in kilometers from the nearest 
location of supplier � to distribution center �, and let #* 
be the cost to ship one in-bound pallet from supplier � one 
kilometer. Let +*  be the percentage of the generic 
out-bound pallet that is provided by supplier � . Then (+*��) is the number of in-bound pallets from supplier �	required to assemble the out-bound pallets delivered to 
outlet �. The total in-bound transportation cost is  
 $,-(�) = 	�#**∈.

��")*��∈��∈�
(+*��)��� 

 														= 	�#**∈.
+*�")*�����∈��∈�

��� .								(4) 
 

 
To capture economies of scale the operational (variable) 
costs are modeled with the nonlinear function  
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0(�) = 	�1
�∈�

	2����3�
���4

5 											(5) 
 

 

where 1 > 0  and 0 < 8 < 1 . While 1  and 8  are DC 
independent, the operational cost of each DC must be 
calculated separately because the DCs have unique 
capacity levels. The benefit is that the variable cost is only 
charged for the actual activity level in a DC and not for the 
excess capacity that results if DCs are selected from a finite 
set of pre-specified capacity levels. Similarly, the building 
costs with  
 

9(�) = 	� :
�∈�

	2����3�
���4

; 												(6) 

 
where : > 0 and 0 < < < 1. By using 1 and 8 for all 
operational costs and : and < for all land and building 
costs, the assumption is that costs are independent of 
location and this is likely not the case. It would be a simple 
matter to subscript the cost function parameters in order to 
account for location and this would not change the 
complexity of the model. In practice, the cost parameters 
can be approximated using regression with historical cost 
data. 
In order to produce designs with fewer DCs the fixed DC 
set up cost  
 =(�) = =	� ���∈�

,											(7) 
 
where =  is a positive parameter, is included in the 
objective function.  
Combining the above, results in the following binary 
optimization model with linear constraints and a concave 
objective function. 
 �>?  @(�, �) = 	$%&'(�) +	$,-(�) + 0(�) + 9(�) +=(�)			(BC)  
 
Subject to: �����∈�

= 1							∀	�	 ∈ 																	 
 					� 	��	�∈�

��� −��� 	≤ 0								∀	�	 ∈ � 

 																							�� 	 ∈ D0, 1E						∀	�	 ∈ � 
 ��� 	 ∈ D0, 1E						∀	�	 ∈ �,			�	 ∈  

 
The model is tested on nine examples abstracted from data 
available from the model company and described in table 
1. The cost function parameters used are 1 = 256.03, 8 = 0.7706, : = 519.18, < = 0.5978	and = = 50,000 . 
The maximum capacity level is set at		� = 10,000. 

 
Table 1. Description of the test problems 

 
Ex. Total Number Number Number Number 

 Network of of of of 
 Pallet Outlets Potential Variables Constraints 
 Demand  DCs   
1 1,107 11 10 120 21 
2 1,663 10 5 55 15 
3 725 8 5 45 13 
4 592 9 3 30 12 
5 523 6 3 21 9 
6 19 ,924 18 14 266 32 
7 16, 726 15 12 192 27 
8 27 ,019 10 7 77 17 
9 29 ,362 8 5 45 13 

 The global solver in LINGO 14 was run on a 64-bit DELL 
PC with two 2.50 GHz threads (cores) and with 32 GBs of 
RAM. All problems were solved to optimality and the 
results in table 2 show the solution time in seconds, the 
indexes of the selected DCs and the corresponding 
capacity levels, and the optimal objective function value. 
The excessive time required to solve examples 6 - 8 is one 
motivation to consider a piece-wise linearization of the 
concave objective function. Another motivation is that the 
break-points in the piece-wise linearization can capture 
technology break-points. While the cost functions are 
linear, the slope of the linear function decreases at the 
break-points corresponding to a decreased cost per pallet 
with a higher level of technology. 

Table 2. Solution statistics for the BO model 
 

Ex. Time Selected 
Capacity 

of 
Optimal  

 (sec.) DC IDs 
Selected 

DCs 
@(�, �) 

1 29 1 1,107 824 ,690 
2 3 1 1,663 1 ,065 ,610 
3 1 1 725 337, 481 
4 1 3 592 259 ,650 
5 1 2 523 342 ,340 

6 145,011 
1  
8  
13 

5,934  
4 ,013  
9, 977 

12 ,012 ,173 

7 985 
1  
12 

6 ,756 
9, 970 

10 ,183, 400 

8 459 
2 
4 
7 

9 ,208  
   7 ,845 

9, 966 
17 ,609 ,700 

9 31 

2  
3 
4 
5 

1, 777  
8, 233 
9 ,937 

   9, 415 

19, 489, 200
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3. Piece-Wise Linearization 
The concave parts of the objective function are replaced 
with piece-wise linearizations. That is, @(�, �) is replaced 
by  

 @FGH(�, �) = 	$%&'(�) +	$,-(�) + 0FGH(�) + 9FGH(�) +=(�)																														(8)			  
  
where 0FGH(�)  is obtained as follows. (9FGH(�)	 is 
obtained in an analogous way.) Define the break-points ∆,, > = 0, 1, 2, 3, 4, 5   where  
 0	 < ∆J	< 	∆K	< 	∆L	< 	∆M	< 	∆N	< 	∆O	= 	�											(9) 
  
and denote the function values at the break-points by  
 0, = 	1	(∆,)5 .														(10) 

 
Define, for �	 ∈ �,  
 �P� = 	�����∈�

�� .									(11) 
Then,  
 0FGH(�P�) =	 
 

QR
RR
S
RRR
T			0J + (�P� −	∆J) UVWX	VY∆WX	∆YZ ,				>@				∆J	≤ �P� ≤ ∆K				0K + (�P� −	∆K) UV[X	VW∆[X	∆WZ ,			>@				∆K	≤ �P� ≤ ∆L0L + (�P� −	∆L) UV\X	V[∆\X	∆[Z ,			>@				∆L	≤ �P� ≤ ∆M0M + (�P� −	∆M) UV]X	V\∆]X	∆\Z ,				>@				∆M	≤ �P� ≤ ∆N0N + (�P� −	∆N) UV̂ X	V]∆^X	∆]Z ,			>@				∆N	≤ �P� ≤ ∆O

_			(12) 

 
and, 0FGH(�) = 	� 0FGH�∈�

(�P�).									(13)				 
  (12) (13) 
The five break-points ∆K= 750, ∆L= 1650, 		∆M= 2900,∆N= 5000		and ∆O= 10000, was motivated by the set of 
five discrete capacity levels used by the model company. 
The model was also tested using the five evenly distributed 
break-points ∆K= 2000, ∆L= 4000, ∆M= 6000, ∆N=8000 and ∆O= 10000.	 
The BO model, and the PWL with both sets of 
break-points, produced identical solutions, i.e., they 
selected the same DCs with the same capacity level. What 
is of interest is the time required to find the solution. The 
times are summarized in table 3. 
 
 
 
 
 
 
 
 
 
 

Table 3. Solution times in seconds 
 

Ex. BO PWL  PWL  Best 
  (even) (Selected) Time 
1 29 1 2 1 
2 3 1 1 1 
3 1 1 1 1 
4 1 1 1 1 
5 1 1 1 1 
6 145 ,011 868 3 ,266 868 
7 985 286 151 151 
8 459 186 142 142 
9 31 21 6 6 

In terms of solution times, the PWL model is superior to 
the BO model. Except for examples 1 and 6, the PWL 
model with selected break-points is superior to that with 
evenly distributed break-points. However, the number and 
values of the break-points should be determined by 
balancing the desire for fewer breakpoints against a better 
piecewise linear approximation and by actual technology 
improvement levels. 
Observing that the PWL model with selected break-points 
is the superior model, it is applied to the model company’s 
complete supply chain. After 210	, 477 seconds the best, 
non-optimal, objective function produced by LINGO for 
the BO model was @(�, �) = 8, 	747, 	190. LINGO solved 
the PWL model to optimality after 2	, 330 seconds and it 
gave a feasible solution to the BO model with @(�, �) =4	, 432	, 050. The PWL model produced a solution that was 49% less costly in time that was two orders of magnitude 
smaller. 

4. Conclusion 
A binary, nonlinear, concave optimization model was 
developed for three-echelon, supply chain network design 
with true variability in capacity selection for the 
Distributions Centers and with cost functions that captured 
decreasing marginal costs and economies of scale. A 
piece-wise linearization of the objective function was 
introduced to both improve solution times and to capture 
technology break-points (related to economies of scale). It 
was shown that, for the model company’s complete supply 
chain, the PWL model produced a higher quality solution 
than the BO model in time lower by orders of magnitude, 
when solved by LINGO. 
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