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Abstract— In recent years, Reverse Logistics (RL) has 
received increasing attentions in supply chain 
management area due to the economic, political, and 
environmental reasons. The aim of this study is to 
address Reverse Logistics Network Design (RLND) 
problem under return quantity and quality 
uncertainties to minimize total cost. Uncertain 
parameters are one of the challenging characteristics 
of RL networks. In this study, a generic two stage 
stochastic programming model to cope with 
uncertainties in RLND is presented. The usefulness of 
the proposed model was validated by its application 
to third party waste of electrical and electronic 
equipment (WEEE) recycling firm in Turkey. The 
results show that the presented two stage stochastic 
programming model provides good solutions to make 
efficient decisions under quantity and quality 
uncertainties. In this paper, we have contributed the 
RLND literature by taking into consideration return  
quality, which is related to sorting ratio in inspection 
centers,  and quantity uncertainties at the same time 
in presented model as a result of detail literature 
review. Second contribution is to present a generic 
recycling network with multi-product, and multi-
stage for third party WEEE recycling firms.  

Keywords— Reverse Logistics Network Design, Two 

Stage Stochastic Programming, Uncertainty 

1. Introduction 

Recently, product recovery has received growing 
attention in the world, due to driving factors such 
as environmental, social, and economic incentives. 
Many manufacturers have adapted the practice of 
recovering value from return products and integrate 
product recovery activities into their processes [1]. 
The European Working Group on Reverse 
Logistics defines RL as follows: The process of 

planning, implementing and controlling flows of 
raw materials, in process inventory, and finished 
goods from a manufacturing, distribution or use 
point to a point of recovery or point of proper 
disposal [2]. The recovery options are repairing, 
refurbishing, remanufacturing, cannibalizing, and 
recycling [3].  The recovery option is widely 
applicable for the products like vehicle engines, 
computers, electrical appliances, electronic 
equipment, copiers, single-use cameras, cellular 
phones, paper, carpets, plastics, medical equipment, 
tires, and batteries [4] and [5]. The list the activities 
in product recovery as follows [6]: 
•Collection of returned products  from product 
holders, 
•Determining the condition of the returns by 
inspection and/or separation, 
•Reprocessing the returns to gain their remaining 
value, 
•Disposal of the unrecoverable returns,   
•Redistribution of the recovered products. 
The reason of product return in the supply as listed 
below [7] and [8]: 
1. Manufacturing returns 2. Commercial returns 
(B2B and B2C) 3. Product recalls 4. Warranty 
returns 5. Service returns 6. End-of-use returns 7. 
End-of-life returns. 
Decisions could be long-term such as those about 
facility location, layout, capacity and design; or 
medium term such as those related to integrating 
operations or deciding about which information and 
communication technologies (ICT) systems are to 
support the return handling or short-term decisions 
about inventory handling, vehicle routing, 
remanufacturing scheduling, etc. [9]. Studies in the 
literature regarding reverse logistics (RL) have 
been concluded on different aspects such as 
network design, return forecasting, economic and 
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environmental performance, lot sizing, vehicle 
routing, etc. The design of RL networks is one of 
the challenging RL problems [7] and [10].  RL 
network design is very complex due to including 
uncertainty of return products in terms of quantity, 
quality and supply timing, considering interaction, 
integration and coordination of different forward 
and reverse flows. A high level of uncertainty is 
one of the characteristics of RL networks [6]. 
Especially the impact of uncertainty in terms of 
quantity, quality and timing was the most popular 
issue in reverse logistic network design [10].  
In this study, we developed a generic two stage 
Stochastic Programming Model (SPM) for multi-
product, multi-stage RLND to cope with the 
uncertainties under quantity and quality. The 
developed generic model was applied through a 
recycling facility that operates in recycling sector 
in Turkey. First contribution of this study to RLND 
literature is to take into consideration one of the 
main uncertainties in RLND; return quantity and 
quality uncertainties. Quality uncertainty is related 
to sorting ratio in inspection centers. The other 
contribution is to propose a generic multi-product, 
and multi-stage recycling network for third party 
WEEE recycling firms.  
In the scope of goals stated above, the rest of this 
paper is organized as follows. In section 2, we 
review literature comprehensively. In section 3, we 
developed deterministic and a generic SPM. In 
section 4, proposed model is applied to real life 
problem and the numerical solutions with 
sensitivity analyses are reported. In section 5, we 
conclude the study and give insight for future 
research. 

2. Literature Review  

In the literature, many researchers showed 
increasingly interest the RLND problem. Some of 
the studies are briefly explained as follows: Barros 
et al. [11] presented a multi-level capacitated mixed 
integer linear program (MILP) model for sand 
recycling in the Netherlands.  Krikke et al. [12] 
developed MILP model for a multi-echelon RLND 
for a copier manufacturer in the Netherlands. 
Jayaraman et al. [13] developed an MILP model as 
a two-echelon capacitated facility location problem 
with limited collection and refurbishing facilities. 
Min et al. [14] addressed a multi-echelon, nonlinear 
mixed-integer programming model for RLND 
problem. A genetic algorithm is developed to solve 
problem. Lu and Bostel [15] developed mixed 

integer programming model, considering 
simultaneously “forward” and “reverse” flows. 
They used langrage heuristic to solve problem. 
Salema et al. [16] developed a generic capacitated, 
multi-product mixed integer formulation under 
uncertain product demands and returns for RL 
network model. Pati et al. [17] developed a multi-
objectives mixed integer goal programming model 
for a recycled paper distribution network. Du and 
Evans [8] presented a bi-objective MILP model for 
designing a closed-loop logistics network for third-
party logistics providers.  
The uncertainty is an important characteristic of 
product recovery [6]. Design of RL networks 
involves generally high degree of uncertainty, 
especially associated with quality and quantity of 
the returned products, as well as the time, delay and 
location of recovery and redistribution [18],[19]and 
[20]. The quantity and quality of used products are 
more difficult to control and estimate [21].  
Deterministic models for RLND lack the ability to 
incorporate such uncertainty factors as variances of 
return amount, timing, and lead time through the 
network [22]. Kall and Wallace (1994) claim that 
stochastic programming techniques present more 
flexibility to cope with uncertainty [23]. So, in 
order to deal with this uncertainty, researchers 
developed various stochastic programing (SP) 
models [19]. Listeş [24] presented a generic SP for 
the design of networks organized in a closed loop 
system. The uncertainty is handled in a SP by 
means of discrete alternative scenarios. Listeş and 
Dekker [23] proposed two formulations using 
stochastic optimization for the network design of 
recycling sand under demand and supply 
uncertainties. The first formulation is a two-stage 
stochastic optimization with locational uncertainty 
of demand. The second formulation involves both 
demand and supply uncertainty via a three-stage 
stochastic optimization model. Listeş [25] 
presented a generic SP model under return quantity 
for the design of integrated real-world RL network. 
The integer L-shaped method is developed to solve 
problem.  Chouinard et al. [18]   considered the 
uncertainties related with recovery, processing and 
demand volumes in a closed-loop supply chain 
design problem by developing a SPM. Sample 
average approximation based heuristic is developed 
to solve problem. Lee and Dong [1] considered a 
stochastic approach for the dynamic RLND under 
demand and return uncertainties. Fonseca et al. [26] 
presented a multi-echelons, multi-commodities 
RLND under uncertainties associated with 



Int. J Sup. Chain. Mgt  Vol.  3, No. 3, September 2014 

 

 

35 

transportation costs and waste generation. El-Sayed 
et al. [27] proposed a stochastic MILP model for 
integrated logistics network design including 
demand and return uncertainties. Kara and Onut 
[28] developed a two-stage SPM under uncertainty. 
Gomes et al. [29] extended the model proposed by 
Salema et al [16] to handle the uncertainty related 
to the quality of the returned products. 
Consequently, the result of literature review shows 
that deterministic models commonly ignore 
uncertainty associated with RLND process. In real 
life RL network includes some uncertainties, but 
the studies considered uncertainties in terms of 
quantity, quality and time in RL literature is still 
scarce. Because of the fact that it is very difficult to 
solve stochastic programming models, which 
include more than one uncertain parameters. 
Therefore, study area including multi-uncertain 
parameter is still scarce in RL literature. According 
to literature review, in this study, we presented a 
generic open loop, multi-stage, multi-product, and 
capacity constrained stochastic programming 
model under quality and return product quantity 
uncertainties for WEEE recycling networks.     

3. Model Development 

The RLND problem discussed in this paper is an 
open loop, multi-echelon, multi-product, capacity 
constraint under return quantity and quality 
uncertainties. We have developed a SPM to 
determine the number of collection centers, 
recycling centers in order to minimize the total 
cost. The proposed model is including collection 
points, inspection centers, recycling centers, 
refinery centers, raw material markets and disposal 
centers. As shown in figure 1, returned products are 
collected from customer zones in collection center 
where is in electronic markets, municipality etc., 
then they are sent to inspection centers; it is divided 
into recoverable products and scrapped products. 
The recoverable products are transported to the 
recycling centers and scrapped products are sent to 
the disposal centers. 

 

Figure 1. Proposed reverse logistic network for 
WEEE 

3.1   Stochastic programming 

Sahinidis [31] categorizes and reviews the main 
optimization approaches under uncertainty into 
three groups: stochastic programming, fuzzy 
programming, and stochastic dynamic 
programming. SP is a framework for modeling 
optimization problems that involve uncertainty 
[32]. In SP, it is assumed that the probability 
distribution functions of the uncertain parameters 
are known and that decision makers try to obtain an 
optimal solution that minimizes the expected value 
of objective [33]. 
The most widely applied SP models are two-stage 
linear and mixed integer linear programs. A two-
stage SPM Birge and Louveaux   is proposed to 
take into account randomness. It is developed for a 
single period context, such as a year [18]. The first 
stage variables are those that have to be decided 
before the actual realization of the uncertain 
parameters becomes available. Subsequently, once 
the random events have presented themselves, 
further design or operational policy improvements 
can be made by selecting, at a certain cost, the 
values of the second stage or recourse variables. 
The objective is to choose the first stage variables 
in a way that the sum of first stage costs and the 
expected value of the random second stage or 
recourse costs is minimized. Some notable 
applications of SP include scheduling, facility 
location, vehicle routing, and process scheduling 
[32].   
In this contribution, the first stage of the model 
deals with the location of inspection and recycling 
processing centers, and the assignment of 
collection points to inspection centers. The second 
stage deals with the tactical decisions of the 
quantity of product flows between centers.  The 
second stage decisions depend on the first stage 
decision variables y, and on a scenario θ ∈Ω of the 
random parameters for a given network-operating 
context. Random parameters relate to quantity and 
quality of returns.  
Let Ω be the set of all possible scenarios and θ a 
particular scenario. Also, let all binary variables be 
included in vector y and all the continuous 
variables in vector x. Let f be the vector of the 
fixed costs related to the opening of the facilities 
and c the vector containing the remaining 
coefficients in the objective function. For a 
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particular scenario the compact model can be stated 
as follows: 
Min  fy +cθx  
s.t. Ax ≥ dθ  
Nθx = 0  
Mx ≤ 0  
Bx ≥ Cy  
y ∈ {0, 1} , x ∈ R+. 
If πθ denotes the probability of scenario θ, then 
because θ is a finite number of discrete scenarios 
the expected value function becomes a summation 
on θ and the uncertain model for compact form can 
be formulated as the following MILP model [34]: 

Min  fy+ . .c xθ θ θ
θ

π∑   

s.t.    Axθ ≥ dθ  
Nθxθ = 0  
Mxθ ≤ 0  
Bxθ ≥ Cy  
y ∈ {0, 1} , xθ ∈ R+  
Note that the obtained solution for this model is not 
optimal for individual scenarios, but it gives the 
network structure for the worst possible scenario. 
For further details, please refer to the work of [34].  
Assumptions: 
The proposed model considers the following 
assumptions: 

• All of the returned products from customers of 
the recycling firm are collected. 

• Inventory costs are ignored. 

• Proposed model is based on a single period of 
time. 

• There is not any safety stock in collection, 
inspection  and recycling centers. 

• There are capacity constraints of collection, 
inspection,  and recycling centers. 

• All costs and allocation rates of products and 
materials are known. 

• Locations, capacities and numbers of collection, 
inspection, recycling and disposal centers are 
known in advance. 

• Transportation costs of full trucks are 
considered and same at each route. 
According to above descriptions, the SPM under 
uncertainties quantity and quality can be defined as 
follows. 

3.2 Proposed Two Stage Stochastic 
Programming  Model  

The aim of the RLND is to determine the location 
of collection, inspection and recycling centers, and 
to find the quantity of flow between the network 

facilities. The presented model includes the 
following sets, parameters and decision variables: 
Indices 
i:Index of collection center locations i∈I={1,..,Ni} 
j:Index of inspection center locations j∈J={1,..,Nj} 
k:Index of recycling center locations 
k∈K={1,..,Nk} 
b:Index of  disposal center locations b∈B={1,..,Nb} 
r: Index of refinery center locations  r ∈R={1,..,Nr}  
h:Index of  material supplier locations    
h∈H={1,..,Nh} 
p: Product         p∈P={1,…,Np}  
m: Material   m∈M={1,…,Nm} 
s: Scenario s∈S={1,…,Ns} 
Parameters  
ei:Annualized fixed costs for opening potential 
collection center i 
f j:Annualized fixed costs for opening cost of 
potential inspection center j 
gk:Annualized fixed costs for opening cost of 
potential recycling center k 
tcipij:Unit transportation cost for product p from 
collection center i to inspection center j  
tirpjk:Unit transportation cost for product p from 
inspection center j to recycling center k  
tidpjb:Unit transportation cost for product p from 
inspection center j to disposal center b  
trrpkr:Unit transportation cost for product p from 
recycling center k to refinery center r  
trmmkh:Unit transportation cost for material m from 
recycling center k to material supplier h  
trdpkb:Unit transportation cost for product p from 
recycling center k to disposal center b  
ccpi:Unit collection cost for product p at collection 
center c 
icpk:Unit inspection cost for product p at inspection 
center j 
rcpk:Unit processing cost for product p at recycling 
center k 
dcpb:Unit disposal cost for product p at disposal 
center  
AC :Advertisement cost 
CICj:Annual capacity of inspection center j (ton) 
CRCk:Annual capacity of recycling center k (ton) 
dciij:Distance between collection location i and 
inspection center j (km) 
dirjk:Distance between inspection center j and 
recycling center k (km) 
didjb:Distance between inspection center j and 
disposal center b (km) 
drdkb:Distance between recycling center k and 
disposal center b (km) 
drmkh: Distance between recycling center k and 
material supplier h (km) 
drrkr:Distance between recycling center k and 
refinery center r (km) 
Sci: Minimum number of collecting center  
Scj :Minimum number of inspection center  
Sck: Minimum number of recycling center  
βm:Rate of product sent from recycling center k to 
material supplier s  



Int. J Sup. Chain. Mgt  Vol.  3, No. 3, September 2014 

 

 

37 

γp:Rate of materials sent from recycling center k to 
disposal center b  
δp:Rate of materials sent from recycling center k to 
refinery r 
rips:Annually total returned p product to collection 
points in scenario s 
a1:Rate of product sent from inspection center j to 
recycling center k  
πs:Probability of scenario s 
Decision variables  

ci
pijsX :Product p flow from collection center i to 

inspection center j in scenario s   
ir
pjksX :Product p flow from inspection center j to 

recycling center k in scenario s     
id
pjbsX  :Product p flow from inspection center j to 

disposal center b in scenario s   
rr
pkrsX :Product p flow from recycling center k to 

refinery center r   in scenario s   
rm
mkhsX  : Material m flow from recycling center k to 

material supplier h in scenario s   
rd
pkbsX  : Product p flow from recycling center k to 

disposal center b in scenario s   
Wi: Indicator opening j. collection center [0, 1] 
Y j: Indicator opening j. inspection center [0, 1] 
Zk: Indicator opening k. recycling center [0, 1] 
V ij: Indicator of connecting collection center i to 
inspection center j 
In terms of the above-mentioned notations, the 
multi-product multi-echelon stochastic reverse 
logistic network design problem can be formulated 
as follows: 
Objective: Total Cost Minimization 

i i j j k k
i j k

W e Y f Z g+ +∑ ∑ ∑  (Facility fixed opening 

cost)+ [ . .ci
s pijs pij ijp i j s

X tci dciπ +∑ ∑ ∑ ∑   

. .ir
pjks pjk jkp j k s

X tir dir +∑ ∑ ∑ ∑   

. .id
pjbs pjb jbp j b s

X tid did +∑ ∑ ∑ ∑   

. .rr
pkrs pkr krp k r s

X trr drr +∑ ∑ ∑ ∑   

. .rm
mkhs mkh khm k h s

X trm drm +∑ ∑ ∑ ∑   

. . ]rd
pkbs pkb kbp k b s

X trd drd∑ ∑ ∑ ∑   

(transportation cost) + 

.ci
pijs pip i j s

X cc∑ ∑ ∑ ∑  (collecting cost) + 

.icci
pijs pip i j s

X∑ ∑ ∑ ∑  (inspection cost) + 

.rcir
pjks pkp j k s

X∑ ∑ ∑ ∑ (recycling cost) +   

.dcid
pjbs pbp j b s

X +∑ ∑ ∑ ∑   

.dcrd
pkbs pbp k b s

X∑ ∑ ∑ ∑  (disposal cost)  (1) 

Constraints 
Flow Constraints 

.ci
pijs psi ijX r V= (∀ p∈P, ∀ i∈Đ, ∀ j∈J, ∀ s∈S) (2) 

.ir ci
pjks pijs p

k i

X X a=∑ ∑   

(∀ p∈P, ∀ k∈K, ∀ s∈S)   (3) 
.(1 )id ci

pjbs pijs p
b i

X X a= −∑ ∑  

 (∀ p∈P, ∀ j∈J, ∀ s∈S)   (4) 
.R .rm ir

mkhs pjks pm m
h j p

X X β=∑ ∑∑   

(∀ m∈M, ∀ k∈K, ∀ s∈S)   (5) 
.rd ir

pkbs pjks p
b j

X X γ=∑ ∑   

(∀ p∈P, ∀ k∈K, ∀ s∈S)   (6) 
.rr ir

pkrs pjks p
r j

X X δ=∑ ∑   

(∀ p∈P, ∀ k∈K, ∀ s∈S)   (7) 
Capacity Constraints 

.ci
pijs jp j

i

X KOM Y=∑    

(∀ p∈P, ∀ j∈J, ∀ s∈S)   (8) 
.Zir

pjks kp k
j

X KGDM=∑   

(∀ p∈P, ∀ k∈K, ∀ s∈S)   (9) 
Logic Constraint  

1ij
j

V =∑   (∀ i∈Đ)    (10) 

Facility Number Constraints  

i i
i

W Sc=∑      (11) 

i j
j

Y Si=∑     (12) 

k k
k

Z Sr=∑     (13) 

Integer and Non-negative Constraint 
ci
pijsX , ir

pjksX , id
pjbsX , rr

pkrsX , rm
mkhsX , rd

pkbsX ≥ 0 and 

Wi, Yj, Zk, Vij∈ (0,1)     (14) 
 
4. Application 

The RLND problem discussed in this paper is an 
open loop, multi-echelon, multi-product, capacity 
constraint under return quantity and quality 
uncertainties. We have developed a SPM to 
determine the number of collection centers, 
recycling centers in order to minimize the total 
cost. The  proposed model is including twenty eight 
collection points, where is located some city in 
Turkey, seven inspection centers (j1:Đzmit, 
j2:Tekirdağ, j3:Erzurum, j4:Antalya, j5:Kayseri, 
j6:Diyarbakır and j7:Zonguldak), five recycling 
centers (i1:Đzmit, i2:Ankara, i3:Đzmir, i4:Adana and 
i5:Samsun), a refinery center and two disposal 
centers. As shown in table 1, returned products are 
collected from customer zones in collection center 
where is in electronic markets, municipality etc., 
then they are sent to inspection centers; it is divided 
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into recoverable products and scrapped products. 
The recoverable products are transported to the 
recycling centers and scrapped products are sent to 
the disposal centers. In our study, it is difficult to 
predict the amount of returned products because of 
uncertainty. In the next chapter, we address how to 
handle uncertainty during RLND. 

Table 1.  RL Network Structure 

RL Structure Number 
Products 4 
Collecting Points 28 
Inspection Centers 7 
Recycling  Centers 5 
Disposal Centers 2 
Refinery Centers 1 
Raw material markets 2 

 
5. Computational Results  

In this section, a numerical example is presented 
for the proposed model. In order to assess the 
performance of the proposed SPM, once a 
deterministic model is developed. In this section, 
both deterministic and SPM are solved in Windows 
7 Centrino Duo 1.86 GHz computer with 512 MB 
RAM. The Proposed SPM is solved by commercial 
software GAMS 21.6/CPLEX 6.0. The 
deterministic solution is derived by using the mean 
value of each stochastic parameter at eighteen 
scenarios. The results are presented in Table 2. 
According to Table 2, runs of deterministic model 
were done within 0.047 seconds. Compared to 
deterministic model, runs of stochastic model were 
done within 0.234 seconds. Deterministic model 
running time is lower than SPM because of the 
complexity of stochastic model. 

Table 2. Summary of the models 

 Deterministic 
Model 

Stochastic 
Model 

Objective 
Function 

1.771.913,5 TL 1.691.779,5 TL 

CPU Time 0.047 sec 0.234 sec 
Number of 
Iterations 

77 473 

Single 
Equations 

985 17,186 

Single 
Variables 

1,302 19,407 

Discrete 
Variables 

236 236 

 
The deterministic model is developed by using the 
mean value of eighteen scenarios. As it can be seen 
at Table 2, total cost of deterministic model 

1.771.913, 5 TL) is higher than total cost of the 
SPM (1.691.779, 5 TL).  
Therefore, it can be concluded that results of the 
SPM propose more economical and compromised 
solution. According to the results of deterministic 
model and SPM, all collection centers except 
Diyarbakir are chosen as inspection centers and 
also Izmit and Ankara are chosen as recycling 
centers shown as in figure 2. 

 

 
Figure 2. Facility locations for stochastic model 

It can be clearly seen from the results that Izmit and 
Ankara are the best alternatives for the RL network 
of the recycling firm. It is not suitable to open 
recycling centers in Đzmir, Adana and Samsun. All 
collection centers except Diyarbakır are chosen by 
both of deterministic and SP model as inspection 
centers. This solution is also supported by historical 
data related to product returns quantity from 
customers. Generally the choices are meaningful 
because of chosen location for inspection and 
recycling centers are nearer to the industrial zones 
this will cause a decrease in transportation cost and 
response time.  
To compare the optimal solutions obtained by SP 
with the results of the deterministic approach, a 
quality criterion, the gap of solution or the relative 
value of the stochastic solution (RVSS) is defined 
according to the following equation [41] and [42]: 

Stochastic-Deterrministic
RVSS=

Deterministic
  (15) 

According to the solution of RVSS = 4,5%, so SP 
is more efficient and economical than deterministic 
model. Then the optimal variables of deterministic 
approach are considered as an input for two-stage 
model and it is allowed that second-stage decisions 
to be chosen optimality as functions of 
deterministic solution. Therefore, we obtain 
stochastic solution (b). By using this solution, the 
relative value of the stochastic solution (RVSS) is 
3,36 %. In conclusion SP ensures lower total cost 
than deterministic model.  
 
 
 
5.1  The validation of proposed SPM 
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A general question in the stochastic programming 
is whether this approach can be nearly optimal. The 
theoretical answer to this question is provided by 
two concepts: the expected value of perfect 
information (EVPI) and the value of stochastic 
solution (VSS). EVPI measures the maximum 
value a decision maker would be ready to pay in 
return for complete (and accurate) information 
about the future. The EVPI is difference between 
the wait-and-see solution (WS) approach and the 
stochastic programming. In the WS approach, each 
scenario separately is solved and the mean of 
objective functions is considered as wait-and-see 
solution. In this study, the mean of objective 
functions are calculated as WS= 1.766.299, 15 TL. 
The expected value of perfect information is, by 
definition, the difference between the wait-and-see 
and the here-and-now solution, namely, 

EVPI = RP−WS                (16) 
EVPI= SP – WS =  -74.519, 65 TL 
To compute the VSS, first the mean value of each 
stochastic parameter is taken and the model is 
solved by mean of each parameter, known in the 
literature as Expected Value (EV) approach. Then 
the optimal variables of EV approach are 
considered as an input for two-stage model and it is 
allowed that second-stage decisions to be chosen 
optimality as functions of EV solution and 
stochastic parameters, known in the literature as 
EEV approach. The difference between the 
objective functions of EEV approach and stochastic 
program would be VSS.  

VSS= EEV - SP  (17) 
VSS = 20.595,06 TL.  This quantity is the cost of 
ignoring uncertainty in choosing a decision. 
The results show the values of stochastic program 
is less than WS problem as expected that it lead to 
the negative values for EVPI measure. In addition, 
the computation shows that the solution of EEV 
approach is feasible. This issue points that solution 
of EV approach in terms of two-stage stochastic 
program (RP problem) is a good solution and 
covering the solution of RP problem. These reports 
confirm the accurateness of two-stage stochastic 
program and give the consistent results for the 
presented model. 

5.2  Sensitivity analysis 

In this section, it is tested the performance of the 
proposed model in several cases by changing some 
of the parameters. A sensitivity analysis is required 
in order to find the parameter effects on the results. 
In this contribution, we conducted some sensitivity 
analysis on return quantity, quality ratio, variable 
costs, and collection cost to investigate the effects 
of these parameters on the objective values. 
 

 
Figure 3. Relation between the total cost and return 

quantity. 

Figure 3 shows the relation between the total cost 
and return quantity. As illustrated in Figure 3, it is 
obvious that an increasing in return quantity 
increases the total cost for both of the models. It 
should be noted that the cost of the reverse network 
is directly depended on the quantity of returned 
products. As can be seen that the capacity of the 
existing facilities is not sufficient to satisfy the 
returns for some return quantity; therefore new 
facilities should be opened and the corresponding 
fixed cost elevates the total cost value. For 
instance, when return quantity increase 150%, new 
inspection center should be open in order to satisfy 
the returns. Therefore, due to new inspection center 
opening, total cost increase as seen on the figure in 
terms of return quantity over 150%. In conclusion, 
return quantity affects total cost positively both of 
two models.  
According to Figure 4, it is obvious that an 
increasing in quality ratio increases the total cost 
for both of the models. Quality ratio in this study is 
associated with the sorting ratio of return products. 
This ratio can vary due to return products qualities. 
Figure 6 shows the effect of sorting ratio on the 
total cost. It can be seen clearly, there is positive 
linear relationship between sorting ratio and total 
cost for both of two models. 
 

 
Figure 4. Relation between the total cost and 

quality ratio. 
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Figure 5. Relation between the total cost and 

variable cost 

Figure 5 illustrates that an increasing at the variable 
cost, which includes transportation costs and 
operational costs, increases total cost for both of 
the models. As the Figure 5 shows the total cost of 
the SP is less significantly sensitive than 
deterministic model. Also the results show that 
total cost increase with a linear pattern.  
 

 
Figure 6. Relation between the  total cost and 

collection cost 

According to figure 6, it is obvious to increase in 
collection cost affects the total cost positively for 
both models. As can be seen in the Figure 6, the 
results show that the relation between total cost and 
collection cost is positive linear. 
 
6. Conclusion  

Due to economic, political, and environmental 
reasons factors more and more companies are 
engaged in the product recovery business. 
Recovery options involve repair, remanufacturing, 
and recycling. Uncertainties in term of return 
product quantity, quality and time are the main 
characteristic of RL networks. Although factors are 
not always certain in the real world, deterministic 
modeling assumes factors as certain. The methods 
that cope with uncertainty help researchers to find 
more realistic solutions. SPM is generally preferred 
approach in dealing with uncertainty.  
This paper presents a two stage SPM under 
quantity and quality uncertainties in RLND as a 
real world case study of waste of electric and the 
waste of electrical and electronic equipment 
recycling firm to minimize total cost. The RL 

network is considered as an open-loop reverse 
logistics network including collection points, 
inspection centers, recycling centers, disposal 
centers, and refinery center. The behavior of this 
model has been studied when some of parameters 
such as return quantity and sorting rates are 
uncertain described by a finite number of the 
possible scenarios generated via historical data. To 
cope with product return uncertainty, six scenarios 
generated from discrete exponential distribution, 
which is obtained by historical product return data 
for all collection centers. Probabilities of all 
scenarios are assigned to each scenario in order not 
to emphasize any of the scenarios. Second 
uncertainty is return product quality. Return quality 
is associated with sorting ratio. To cope with 
quality uncertainty three scenarios is generated. 
Therefore for handling quantity and quality 
uncertainties, eighteen scenarios are generated. 
Computational results show that the SPM gives 
more economical and efficient solutions compared 
to deterministic model. SPM is more successful 
than deterministic model to handle uncertain 
parameters. The validation of the solution and 
sensitivity analyses of the proposed model is 
conducted. This allows planning maker to take a 
better decision and to understand how the system 
behaves under different rate of returns, collection 
cost, quality ratio, and variable cost. In this paper, 
the presented model can help managers to handle 
quantity and quality uncertainties in process of 
strategic decision making on facility location 
allocation. 
This study contributed to literature by handling 
return quantity and quality, which is related to 
sorting ratio in inspection centers, uncertainties at 
the same time in RLND. Second   contribution is 
that we presented a generic multi-product, multi-
stage recycling network for third party RL firm. 
Several extensions of this model may be considered 
for future directions. For instance, other 
uncertainties such as time, capacity, and 
transportation cost uncertainties can be addressed. 
Heuristic methods can be developed to increase 
computational performance quality. Moreover, 
approximations and sampling-based of the solution 
approach may be considered for addressing very 
large number of scenarios. 
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